Fossil fuel use may emit 40 percent more methane than we thought

Using fossil fuels releases
much more of the potent greenhouse gas methane than previously thought — possibly 25 to 40 percent more, new research suggests. The finding could help
scientists and policy makers target how and where to reduce these
climate-warming emissions, researchers report February 19 in Nature.

The amount of methane released
from geologic (rather than biological) sources is from 172 to 195 teragrams (trillions
of grams) per year. Those geologic methane sources include not only the oil and
gas industry, but also natural vents such as onshore and offshore gas seeps. Researchers
previously had estimated that the natural portion of those geologic emissions
released between 40 to 60 teragrams of methane each year, with the remainder
coming from fossil fuels.

But new analyses of over two
centuries of methane preserved in ice cores suggest that natural seeps — both
in the past and in modern times — send far less methane into the atmosphere
than once thought. That means that modern human activities are responsible for
nearly all of the current geologic emissions of methane, atmospheric chemist Benjamin
Hmiel of the University of Rochester in New York and his colleagues conclude.

Methane has about 80 times
the atmosphere-warming potential of carbon dioxide — but only on short
timescales, because methane only lingers in the atmosphere for 10 to 20 years,
while CO2 can linger for hundreds of years. “So the changes we make
to our [methane] emissions are going to impact the atmosphere much more
quickly,” Hmiel says.

Coal mining, natural gas and
other fossil fuel sources pushed atmospheric methane levels upward through the
20th century. Those emissions tapered off in the first few years of the 21st
century. However, beginning in 2007, atmospheric methane began to increase
again, and is now at a level not seen since the 1980s.

What’s causing the post-2007
buildup of the gas isn’t clear. Previous research points to some combination of
amped-up microbial activity in wetlands — possibly linked to changes in temperature and rainfall
— and more cow burps
and leaky pipelines (SN: 11/18/15).
Less methane is also getting broken down in the atmosphere (SN: 4/20/17).

If methane emissions
continue rising, meeting the greenhouse gas reduction goals of the 2015 Paris Agreement (SN: 11/26/19) will be difficult, says Euan Nisbet, a geochemist
at Royal Holloway, University of London, who was not involved in the new study.
So identifying the portion of the methane bump that’s linked to the oil and gas
industry offers opportunities for targeted reductions.

To calculate today’s methane
emissions from all geologic sources, scientists first need to establish a
baseline for preindustrial methane emissions from natural sources like seeps
and mud volcanoes. One way to distinguish biological from geologic sources of
methane is by using the radioactive isotope carbon-14, a version of the element.
Biological sources produce methane with relatively high carbon-14 levels, while
methane from geologic sources tends to be very old, so that the carbon-14 has
long since decayed away.

To separate human-caused
from natural geologic sources, researchers need to look into the past. So, in
the new study, the team turned to methane preserved in ice cores from Greenland
dating from 1750 to 2013.

Before the Industrial
Revolution, the team discovered, methane emissions from geologic sources were
around 1.6 teragrams per year on average — and no more than 5.4 teragrams per year at their
highest. That’s an order of magnitude smaller than previous estimates.

Subtracting that amount from
total methane emissions today, the researchers calculate that nearly all of the
nonbiological methane measured today, from 172 to 195 teragrams per year, is
coming from anthropogenic sources. That’s about 38 to 58 teragrams higher per
year than previously estimated, an increase of 25 to 40 percent.

“Paradoxically, that’s
actually a hopeful finding,” Nisbet says. Stopping gas leaks and reducing coal
mine emissions are relatively easy ways of cutting greenhouse gas emissions, he
says. So reducing methane emissions offers “an even bigger opportunity” for
reducing greenhouse gases overall.

But such ice core–based work is
not yet proven to be the most accurate technique to estimate natural geologic
emissions, says Stefan Schwietzke, an environmental scientist with the
Environmental Defense Fund who is based in Berlin. The ice core information is
useful because it gives an immediate global snapshot of methane emissions, but
“it has the challenge of interpretation and a lot of very complex analysis,”
Schwietzke says.

Direct measurements of
methane emitted from different seeps or over mud volcanoes suggest much larger
natural emissions, he adds. The problem with this method, however, is that it’s
difficult to scale up from local measurements to a global number. “To really
understand the magnitudes, these two methods need to be reconciled. That hasn’t
happened yet.”

Schwietzke and other researchers
have proposed using airborne remote sensing to try to reconcile the two techniques. Airborne
measurements can give a bigger-picture estimate, while also identifying local
hot spots. Scientists have already been using this work to identify sources
such as leaking pipelines, landfills or
dairy farms (SN: 11/14/19). Similar projects are tracking methane
emission hot
spots in Arctic permafrost

Still, Schwietzke adds, this
debate over the technique doesn’t change the fact that human-caused emissions,
including fossil fuels, are responsible for the dramatic rise of atmospheric
methane over the last century. “It is very large. And reducing those emissions
will reduce warming.”